Source code for highcharts_core.options.data

import tempfile
import os
from typing import Optional, List
from decimal import Decimal

from validator_collection import validators

from highcharts_core import constants, errors
from highcharts_core.decorators import class_sensitive
from highcharts_core.metaclasses import HighchartsMeta
from highcharts_core.utility_classes.javascript_functions import CallbackFunction


[docs]class Data(HighchartsMeta): """The ``data`` property provides a simplified interface for adding data to a chart from sources like CVS, HTML tables, or grid views. See also `the tutorial article on the Data module <https://www.highcharts.com/docs/working-with-data/data-module>`_. .. warning:: It requires the ``modules/data.js`` file to be loaded in the browser / client. .. warning:: Please note that the default way of adding data in Highcharts, without the need of a module, is through the ``series.data`` property. """ def __init__(self, **kwargs): self._before_parse = None self._columns = None self._columns_url = None self._column_types = None self._complete = None self._csv = None self._csv_url = None self._data_refresh_rate = None self._date_format = None self._decimal_point = None self._enable_polling = None self._end_column = None self._end_row = None self._first_row_as_names = None self._google_api_key = None self._google_spreadsheet_key = None self._google_spreadsheet_range = None self._item_delimiter = None self._line_delimiter = None self._parsed = None self._parse_date = None self._rows = None self._rows_url = None self._series_mapping = None self._start_column = None self._start_row = None self._switch_rows_and_columns = None self._table = None self.before_parse = kwargs.get('before_parse', None) self.columns = kwargs.get('columns', None) self.columns_url = kwargs.get('columns_url', None) self.column_types = kwargs.get('column_types', None) self.complete = kwargs.get('complete', None) self.csv = kwargs.get('csv', None) self.csv_url = kwargs.get('csv_url', None) self.data_refresh_rate = kwargs.get('data_refresh_rate', None) self.date_format = kwargs.get('date_format', None) self.decimal_point = kwargs.get('decimal_point', None) self.enable_polling = kwargs.get('enable_polling', None) self.end_column = kwargs.get('end_column', None) self.end_row = kwargs.get('end_row', None) self.first_row_as_names = kwargs.get('first_row_as_names', None) self.google_api_key = kwargs.get('google_api_key', None) self.google_spreadsheet_key = kwargs.get('google_spreadsheet_key', None) self.google_spreadsheet_range = kwargs.get('google_spreadsheet_range', None) self.item_delimiter = kwargs.get('item_delimiter', None) self.line_delimiter = kwargs.get('line_delimiter', None) self.parsed = kwargs.get('parsed', None) self.parse_date = kwargs.get('parse_date', None) self.rows = kwargs.get('rows', None) self.rows_url = kwargs.get('rows_url', None) self.series_mapping = kwargs.get('series_mapping', None) self.start_column = kwargs.get('start_column', None) self.start_row = kwargs.get('start_row', None) self.switch_rows_and_columns = kwargs.get('switch_rows_and_columns', None) self.table = kwargs.get('table', None) @property def _dot_path(self) -> Optional[str]: """The dot-notation path to the options key for the current class. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return 'data' @property def before_parse(self) -> Optional[CallbackFunction]: """A JavaScript callback function that is used to modify the CSV data before it is parsed. The function should return a modified version of the CSV string. Defaults to :obj:`None <python:None>`. :rtype: :class:`CallbackFunction` or :obj:`None <python:None>` """ return self._before_parse @before_parse.setter @class_sensitive(CallbackFunction) def before_parse(self, value): self._before_parse = value @property def columns(self) -> Optional[List[List[int | str | float | Decimal | type(None) | constants.EnforcedNullType]]]: """The data itself represented in a tabular form. Expects an iterable of iterables, where each second-level iterable represents a column of data. Defaults to :obj:`None <python:None>`. .. code-block:: python my_data = Data() my_data.columns = [ [None, 'Apples', 'Pears', 'Oranges'], # categories ['Ola', 1, 4, 3], # first series for "Ola" ['Kari', 5, 4, 2] # second series for "Kari" ] .. note:: Each cell in the second-level iterable can either be a :class:`str <python:str>`, numeric value, :obj:`None <python:None>`, or :class:`EnforcedNullType`. .. hint:: Provided that :meth:`Data.switch_rows_and_columns` is not set, the columns will be interpreted as series. :rtype: :obj:`None <python:None>` or :class:`list <python:list>` of :class:`list <python:list>` instances with :class:`str <python:str>`, numeric, :obj:`None <python:None>`, or :class:`EnforcedNullType` members """ return self._columns @columns.setter def columns(self, value): if not value: self._columns = None else: value = validators.iterable(value) processed_values = [] for item in value: if not item or isinstance(item, constants.EnforcedNullType): processed_values.append(item) elif isinstance(item, str): processed_values.append(item) else: item = validators.numeric(item) processed_values.append(item) self._columns = processed_values @property def columns_url(self): """A URL to a remote JSON dataset, structured as a column array. Defaults to :obj:`None <python:None>`. .. note:: Will be fetched when the chart is created using Ajax. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._columns_url @columns_url.setter def columns_url(self, value): if not value: self._columns_url = None else: try: self._columns_url = validators.url( value, allow_special_ips=os.getenv("HCP_ALLOW_SPECIAL_IPS", False) ) except ValueError as error: try: self._columns_url = validators.path(value) except ValueError: raise error @property def column_types(self) -> Optional[List[str]]: """The data types for each column in the related CSV data. This property expects an iterable of :class:`str <python:str>` values, where each item in the iterable corresponds to a column in the underlying CSV data. The type specified for each column may be one of the following values: * ``'string'`` * ``'number'`` * ``'float'`` * ``'date'`` Defaults to :obj:`None <python:None>`. :returns: The data types for each column in the related CSV data. :rtype: :class:`list <python:list>` of :class:`str <python:str>` or :obj:`None <python:None>` """ return self._column_types @column_types.setter def column_types(self, value): if not value: self._column_types = None else: values = [] value = validators.iterable(value, forbid_literals = (str, bytes)) for item in value: item = str(item).lower() if item not in constants.DATA_COLUMN_TYPES: raise errors.HighchartsValueError( f'column_types expects one of {constants.DATA_COLUMN_TYPES}. ' f'Received: {item}' ) values.append(item) self._column_types = values @property def complete(self) -> Optional[CallbackFunction]: """The JavaScript callback function that is evaluated when the data has finished loading (optionally from an external source) and been parsed. The first argument passed is a finished chart options object, containing the series. These options can be extended with additional options and passed directly to the chart constructor. Defaults to :obj:`None <python:None>`. :rtype: :class:`CallbackFunction` or :obj:`None <python:None>` """ return self._complete @complete.setter @class_sensitive(CallbackFunction) def complete(self, value): self._complete = value @property def csv(self) -> Optional[str]: """A comma-delimited string to be parsed. Defaults to :obj:`None <python:None>`. .. seealso:: The object has closely-related properties that determine which part of the CSV string should be used when constructing the chart and to configure how the CSV string should be parsed. In particular, please review: * :meth:`Data.start_row` * :meth:`Data.start_column` * :meth:`Data.end_row` * :meth:`Data.end_column` * :meth:`Data.line_delimiter` * :meth:`Data.item_delimiter` .. warning:: The built-in CSV parser does *not* support all flavours of CSV, so in some cases it may be necessary to use an external CSV parser. See `this example <https://jsfiddle.net/highcharts/u59176h4/>`_ of parsing a CSV through the MIT-licensed `Papa Parse <http://papaparse.com/>`_ library. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._csv @csv.setter def csv(self, value): self._csv = validators.string(value, allow_empty = True) @property def csv_url(self): """A URL to a remote CSV dataset. Defaults to :obj:`None <python:None>`. .. note:: Will be fetched when the chart is created using Ajax. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._csv_url @csv_url.setter def csv_url(self, value): if not value: self._csv_url = None else: try: self._csv_url = validators.url( value, allow_special_ips=os.getenv("HCP_ALLOW_SPECIAL_IPS", False) ) except ValueError as error: try: self._csv_url = validators.path(value) except ValueError: raise error @property def data_refresh_rate(self) -> Optional[int | float | Decimal]: """The number of seconds between each poll of data from a remote source configured using either :meth:`Data.columns_url`, :meth:`Data.csv_url`, :meth:`Data.rows_url`, or :meth:`Data.google_spreadsheet_key`. Defaults to ``1``. .. warning:: Cannot be set to less than ``1``. .. note:: For polling to be enabled, :meth:`Data.enable_polling` must be ``True``. :rtype: numeric or :obj:`None <python:None>` """ return self._data_refresh_rate @data_refresh_rate.setter def data_refresh_rate(self, value): self._data_refresh_rate = validators.numeric(value, allow_empty = True) @property def date_format(self) -> Optional[str]: """Indicates the format string to use to parse date values. If :obj:`None <python:None>`, defaults to a best-guess based on what format gives valid and ordered dates. Defaults to :obj:`None <python:None>`. Valid options include: * ``'YYYY/mm/dd'`` * ``'dd/mm/YYYY'`` * ``'mm/dd/YYYY'`` * ``'dd/mm/YY'`` * ``'mm/dd/YY'`` :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._date_format @date_format.setter def date_format(self, value): self._date_format = validators.string(value, allow_empty = True) @property def decimal_point(self) -> Optional[str]: """The decimal point used when parsing number values. Defaults to ``'.'`` if :obj:`None <python:None>`. .. note:: If both ``decimal_point`` and :meth:`Data.delimiter` are set to :obj:`None <python:None>`, the parser will attempt to deduce the decimal point automatically. :rtype: :class:`str <python:str>` """ return self._decimal_point @decimal_point.setter def decimal_point(self, value): self._decimal_point = validators.string(value, allow_empty = True) @property def enable_polling(self) -> Optional[bool]: """If ``True``, automatically re-fetches remote datasets every *n* seconds (as per :meth:`Data.data_refresh_rate`). Defaults to ``False``. .. note:: This flag only has an impact if remote datasets are in use, as specified by any one of: * :meth:`Data.columns_url` * :meth:`Data.csv_url` * :meth:`Data.google_spreadsheet_key` * :meth:`Data.rows_url` :rtype: :class:`bool <python:bool>` or :obj:`None <python:None>` """ return self._enable_polling @enable_polling.setter def enable_polling(self, value): if value is None: self._enable_polling = None else: self._enable_polling = bool(value) @property def end_column(self) -> Optional[int]: """In tabular input data, the last column (indexed by ``0``) to use. If :obj:`None <python:None>`, defaults to the last column that contains data. :rtype: :class:`int <python:int>` or :obj:`None <python:None>` """ return self._end_column @end_column.setter def end_column(self, value): self._end_column = validators.integer(value, allow_empty = True, minimum = 0) @property def end_row(self) -> Optional[int]: """In tabular input data, the last row (indexed by ``0``) to use. If :obj:`None <python:None>`, defaults to the last row that contains data. :rtype: :class:`int <python:int>` or :obj:`None <python:None>` """ return self._end_row @end_row.setter def end_row(self, value): self._end_row = validators.integer(value, allow_empty = True, minimum = 0) @property def first_row_as_names(self) -> Optional[bool]: """If ``True``, use the first row of data as series names. Defaults to ``True``. :rtype: :class:`bool <python:bool>` or :obj:`None <python:None>` """ return self._first_row_as_names @first_row_as_names.setter def first_row_as_names(self, value): if value is None: self._first_row_as_names = None else: self._first_row_as_names = bool(value) @property def google_api_key(self) -> Optional[str]: """The Google Spreadsheet API key required for access. Defaults to :obj:`None <python:None>`. .. note:: Be sure to generate your Google Spreadsheet API key at Google's `API Services / Credentials <https://console.cloud.google.com/apis/credentials>`_. .. warning:: To load data from Google Sheets, the :meth:`Data.google_spreadsheet_key` must be set, and must have access to the spreadsheet indicated by the spreadsheet key. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._google_api_key @google_api_key.setter def google_api_key(self, value): self._google_api_key = validators.string(value, allow_empty = True) @property def google_spreadsheet_key(self) -> Optional[str]: """The key or ``spreadsheetId`` value for the Google Sheets spreadsheet from which you wish to load data. Defaults to :obj:`None <python:None>`. .. hint:: If you need help finding your spreadsheet key, please review the `Google Sheets API Overview <https://developers.google.com/sheets/api/guides/concepts>`_ .. warning:: To load data from Google Sheets, the :meth:`Data.google_api_key` must be set, and must have access to the spreadsheet indicated by the spreadsheet key. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._google_spreadsheet_key @google_spreadsheet_key.setter def google_spreadsheet_key(self, value): self._google_spreadsheet_key = validators.string(value, allow_empty = True) @property def google_spreadsheet_range(self) -> Optional[str]: """The Google Sheets A1 or R1C1 notation cell range from which to retrieve data. Defaults to :obj:`None <python:None>`. .. note:: If set, this property takes precedence over :meth:`Data.start_column`, :meth:`Data.end_column`, :meth:`Data.start_row`, and :meth:`Data.end_row`. .. hint:: For more details on how to determine and provide the spreadsheet range, please review the relevant `Google Sheets API documentation <https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets.values/get>`_. .. warning:: To load data from Google Sheets, the :meth:`Data.google_api_key` and :meth:`Data.google_spreadsheet_key` must both be set. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._google_spreadsheet_range @google_spreadsheet_range.setter def google_spreadsheet_range(self, value): self._google_spreadsheet_range = validators.string(value, allow_empty = True) @property def item_delimiter(self) -> Optional[str | bool]: """Item or cell delimiter used when parsing CSV data. If :obj:`None <python:None>` or ``False``, defaults to the tab character ``\t`` if a tab character is found in the CSV string. If no tab character is found, defaults to ``','``. :rtype: :class:`str <python:str>` or :class:`bool <python:bool>` or :obj:`None <python:None>` """ return self._item_delimiter @item_delimiter.setter def item_delimiter(self, value): if value is False: self._item_delimiter = False else: self._item_delimiter = validators.string(value, allow_empty = True) @property def line_delimiter(self) -> Optional[str]: """The string used to delimit records (lines) when parsing CSV data. Defaults to :obj:`None <python:None>`, which assumes ``'\\n'``. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._line_delimiter @line_delimiter.setter def line_delimiter(self, value): self._line_delimiter = validators.string(value, allow_empty = True) @property def parsed(self) -> Optional[CallbackFunction]: """A JavaScript callback function to access the parsed columns (the two-dimentional input data array) directly *before* they are interpreted into series data and categories. The function should return ``false`` to stop completion, or call (in JavaScript) ``this.complete()`` to continue asynchronously. Defaults to :obj:`None <python:None>`. :rtype: :class:`CallbackFunction` or :obj:`None <python:None>` """ return self._parsed @parsed.setter @class_sensitive(CallbackFunction) def parsed(self, value): self._parsed = value @property def parse_date(self) -> Optional[CallbackFunction]: """A JavaScript callback function to parse string representations of dates into JavaScript timestamps. Should return an integer timestamp on success. Defaults to :obj:`None <python:None>`. :rtype: :class:`CallbackFunction` or :obj:`None <python:None>` """ return self._parse_date @parse_date.setter @class_sensitive(CallbackFunction) def parse_date(self, value): self._parse_date = value @property def rows(self) -> Optional[List[List[int | str | float | Decimal | type(None) | constants.EnforcedNullType]]]: """The data itself represented in a tabular form. Expects an iterable of iterables, where each second-level iterable represents a row of data. Defaults to :obj:`None <python:None>`. .. code-block:: python my_data = Data() my_data.rows = [ [None, 'Apples', 'Pears', 'Oranges'], # categories ['Ola', 1, 4, 3], # first series for "Ola" ['Kari', 5, 4, 2] # second series for "Kari" ] .. note:: Each cell in the second-level iterable can either be a :class:`str <python:str>`, numeric value, :obj:`None <python:None>`, or :class:`EnforcedNullType`. .. hint:: Provided that :meth:`Data.switch_rows_and_columns` is not set, the rows will be interpreted as series. :rtype: :obj:`None <python:None>` or :class:`list <python:list>` of :class:`list <python:list>` instances with :class:`str <python:str>`, numeric, :obj:`None <python:None>`, or :class:`EnforcedNullType` members """ return self._rows @rows.setter def rows(self, value): if not value: self._rows = None else: value = validators.iterable(value) processed_values = [] for item in value: if not item or isinstance(item, constants.EnforcedNullType): processed_values.append(item) elif isinstance(item, str): processed_values.append(item) else: item = validators.numeric(item) processed_values.append(item) self._rows = processed_values @property def rows_url(self): """A URL to a remote JSON dataset, structured as a row array. Defaults to :obj:`None <python:None>`. .. note:: Will be fetched when the chart is created using Ajax. :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._rows_url @rows_url.setter def rows_url(self, value): if not value: self._rows_url = None else: try: self._rows_url = validators.url( value, allow_special_ips=os.getenv("HCP_ALLOW_SPECIAL_IPS", False) ) except ValueError as error: try: self._rows_url = validators.path(value) except ValueError: raise error @property def series_mapping(self) -> Optional[dict[str, int]]: """A dictionary used to indicate where point properties are to be found in the data. Property names are the keys, while the values are the column indices indicating where in the CSV the data for that point is to be found. Defaults to :obj:`None <python:None>`. :rtype: :class:`dict <python:dict>` with :class:`str <python:str>` keys and :class:`int <python:int>` values, or :obj:`None <python:None>`. """ return self._series_mapping @series_mapping.setter def series_mapping(self, value): if not value: self._series_mapping = None else: value = validators.dict(value) for key in value: key = validators.string(value) item = value[key] item = validators.integer(item) self._series_mapping = value @property def start_column(self) -> Optional[int]: """In tabular input data, the first column (indexed by ``0``) to use. If :obj:`None <python:None>`, defaults to ``0``. :rtype: :class:`int <python:int>` or :obj:`None <python:None>` """ return self._start_column @start_column.setter def start_column(self, value): self._start_column = validators.integer(value, allow_empty = True, minimum = 0) @property def start_row(self) -> Optional[int]: """In tabular input data, the first row (indexed by ``0``) to use. If :obj:`None <python:None>`, defaults to ``0``. :rtype: :class:`int <python:int>` or :obj:`None <python:None>` """ return self._start_row @start_row.setter def start_row(self, value): self._start_row = validators.integer(value, allow_empty = True, minimum = 0) @property def switch_rows_and_columns(self) -> Optional[bool]: """If ``True``, swiches the interpretation of columns and rows so that :meth:`Data.columns` effectively becomes rows of the data while :meth:`Data.rows` is interpreted as the series of data. Defaults to ``False``. :rtype: :class:`bool <python:bool>` or :obj:`None <python:None>` """ return self._switch_rows_and_columns @switch_rows_and_columns.setter def switch_rows_and_columns(self, value): if value is None: self._switch_rows_and_columns = None else: self._switch_rows_and_columns = bool(value) @property def table(self) -> Optional[str]: """An HTML table (in :class:`str <pythoN:str>` form), or the ID of such a table found in the browser DOM, which should be parsed to extract the data intended for visualization. Defaults to :obj:`None <python:None>`. .. seealso:: The object has closely-related properties that determine which part of the HTML table should be used when constructing the chart and to configure how the table string should be parsed. In particular, please review: * :meth:`Data.start_row` * :meth:`Data.start_column` * :meth:`Data.end_row` * :meth:`Data.end_column` :rtype: :class:`str <python:str>` or :obj:`None <python:None>` """ return self._table @table.setter def table(self, value): self._table = validators.string(value, allow_empty = True) @classmethod def _get_kwargs_from_dict(cls, as_dict): kwargs = { 'before_parse': as_dict.get('beforeParse', None), 'columns': as_dict.get('columns', None), 'columns_url': as_dict.get('columnsURL', None), 'column_types': as_dict.get('columnTypes', None), 'complete': as_dict.get('complete', None), 'csv': as_dict.get('csv', None), 'csv_url': as_dict.get('csvURL', None), 'data_refresh_rate': as_dict.get('dataRefreshRate', None), 'date_format': as_dict.get('dateFormat', None), 'decimal_point': as_dict.get('decimalPoint', None), 'enable_polling': as_dict.get('enablePolling', None), 'end_column': as_dict.get('endColumn', None), 'end_row': as_dict.get('endRow', None), 'first_row_as_names': as_dict.get('firstRowAsNames', None), 'google_api_key': as_dict.get('googleAPIKey', None), 'google_spreadsheet_key': as_dict.get('googleSpreadsheetKey', None), 'google_spreadsheet_range': as_dict.get('googleSpreadsheetRange', None), 'item_delimiter': as_dict.get('itemDelimiter', None), 'line_delimiter': as_dict.get('lineDelimiter', None), 'parsed': as_dict.get('parsed', None), 'parse_date': as_dict.get('parseDate', None), 'rows': as_dict.get('rows', None), 'rows_url': as_dict.get('rowsURL', None), 'series_mapping': as_dict.get('seriesMapping', None), 'start_column': as_dict.get('startColumn', None), 'start_row': as_dict.get('startRow', None), 'switch_rows_and_columns': as_dict.get('switchRowsAndColumns', None), 'table': as_dict.get('table', None) } return kwargs def _to_untrimmed_dict(self, in_cls = None) -> dict: untrimmed = { 'beforeParse': self.before_parse, 'columns': self.columns, 'columnsURL': self.columns_url, 'columnTypes': self.column_types, 'complete': self.complete, 'csv': self.csv, 'csvURL': self.csv_url, 'dataRefreshRate': self.data_refresh_rate, 'dateFormat': self.date_format, 'decimalPoint': self.decimal_point, 'enablePolling': self.enable_polling, 'endColumn': self.end_column, 'endRow': self.end_row, 'firstRowAsNames': self.first_row_as_names, 'googleAPIKey': self.google_api_key, 'googleSpreadsheetKey': self.google_spreadsheet_key, 'googleSpreadsheetRange': self.google_spreadsheet_range, 'itemDelimiter': self.item_delimiter, 'lineDelimiter': self.line_delimiter, 'parsed': self.parsed, 'parseDate': self.parse_date, 'rows': self.rows, 'rowsURL': self.rows_url, 'seriesMapping': self.series_mapping, 'startColumn': self.start_column, 'startRow': self.start_row, 'switchRowsAndColumns': self.switch_rows_and_columns, 'table': self.table, } return untrimmed
[docs] @classmethod def from_pandas(cls, as_df, represent_as = 'csv', data_kwargs = None, pandas_kwargs = None): """Create a :class:`Data` instance from a Pandas :class:`DataFrame <pandas:DataFrame`. :param as_df: The :class:`DataFrame <pandas:pandas.DataFrame>` from which to create the :class:`Data` instance. :type as_df: :class:`DataFrame <pandas:pandas.DataFrame>` :param represent_as: The format to which ``as_df`` should be serialized. Accepts ``'csv'`` or ``'html'``. Defaults to ``'csv'``. :type represent_as: :class:`str <python:str>` :param data_kwargs: Additional keyword arguments to pass to the :class:`Data` constructor (``__init__()``) method. Defaults to :obj:`None <python:None>`. :type data_kwargs: :class:`dict <python:dict>` :param pandas_kwargs: Keyword arguments to pass to the Pandas :meth:`DataFrame.to_csv()` or :meth:`DataFrame.to_html()` methods. Defaults to :obj:`None <python:None>`. :type pandas_kwargs: :class:`dict <python:dict>` .. note:: To prevent unexpected behavior, if ``represent_as`` is set to ``'csv'``, the :meth:`Data.table` property will be set to :obj:`None <python:None>`. If ``represent_as`` is set to ``'html'``, the :meth:`Data.csv` property will be set to :obj:`None <python:None>`. :returns: A :class:`Data` instance. """ from pandas import DataFrame if not data_kwargs: data_kwargs = {} if not pandas_kwargs: pandas_kwargs = {} if not isinstance(as_df, DataFrame): raise errors.HighchartsValueError(f'as_df must be a Pandas DataFrame.' f'Was: {as_df.__class__.__name__}') represent_as = validators.string(represent_as, allow_empty = True) or 'csv' represent_as = represent_as.lower() if represent_as not in ['csv', 'html']: raise errors.HighchartsValueError(f'represent_as expects either "csv" or ' f'"html". Received: {represent_as}') if represent_as == 'csv': pandas_kwargs['path_or_buf'] = None as_csv = as_df.to_csv(**pandas_kwargs) data_kwargs['csv'] = as_csv data_kwargs['table'] = None else: pandas_kwargs['buf'] = None as_table = as_df.to_html(**pandas_kwargs) data_kwargs['csv'] = None data_kwargs['table'] = as_table return cls(**data_kwargs)
[docs] @classmethod def from_pyspark(cls, as_df, data_kwargs = None, pyspark_kwargs = None, consolidation = 'repartition'): """Create a :class:`Data` instance from a PySpark :class:`DataFrame <pyspark:sql.DataFrame>`. .. warning:: If you are using PySpark, you might be working with extremely large datasets (proverbial "big data"). Are you sure you want to be visualizing datasets of such size? If so, you should be aware that Highcharts for Python tries to store the dataset in the Python environment's memory - **not** on disk. If you need to read large datasets from disk, using the :meth:`Data.from_pyspark()` is **not** recommended for this reason. :param as_df: The :class:`DataFrame <pyspark:sql.DataFrame>` from which to create the :class:`Data` instance. :type as_df: :class:`pyspark.sql.DataFrame <pyspark:sql.DataFrame>` :param data_kwargs: Additional keyword arguments to pass to the :class:`Data` constructor (``__init__()``) method. Defaults to :obj:`None <python:None>`. .. warning:: The :meth:`Data.csv` and :meth:`Data.table` properties will be overwritten by Highcharts for Python if specified, so don't bother. :type data_kwargs: :class:`dict <python:dict>` :param pyspark_kwargs: Keyword arguments to pass to the Pyspark :meth:`DataFrame.write().csv() <pyspark:sql.DataFrameWriter.csv>` method. Defaults to :obj:`None <python:None>`. .. warning:: The ``path`` and ``mode`` arguments will be overwritten by Highcharts for Python if specified, so don't bother. :type pyspark_kwargs: :class:`dict <python:dict>` :param consolidation: If ``'repartition'``, will repartition your PySpark :class:`DataFrame <pyspark:pyspark.sql.DataFrame>` into a single unpartitioned table prior to the generation of a CSV dataset. If ``'coalesce'``, will coalesce your PySpark :class:`DataFrame <pyspark:pyspark.sql.DataFrame>` into a single unpartitioned table prior to the generation of a CSV dataset. If :obj:`None <python:None>`, will not apply any consolidation to the :class:`DataFrame <pyspark:pyspark.sql.DataFrame>`. Defaults to ``'coalesce'``. .. hint:: Setting this value to ``'coalesce'`` is particularly useful if you are working on your :class:`DataFrame <pyspark:pyspark.sql.DataFrame>` in multiple Spark nodes to prevent loss of data. Setting this value to :obj:`None <python:None>` may provide a boost to performance, however use with caution as it may lead to unexpected data loss or errors if using multiple Spark nodes. :returns: A :class:`Data` instance. """ from pyspark.sql import DataFrame if not data_kwargs: data_kwargs = {} if not pyspark_kwargs: pyspark_kwargs = {} pyspark_kwargs['mode'] = 'overwrite' if not isinstance(as_df, DataFrame): raise errors.HighchartsValueError(f'as_df must be a Pyspark DataFrame.' f'Was: {as_df.__class__.__name__}') with tempfile.NamedTemporaryFile() as csv_file: pyspark_kwargs['path'] = csv_file.name if consolidation == 'repartition': as_df.repartition(1).write.csv(**pyspark_kwargs) elif consolidation: as_df.coalesce(1).write.csv(**pyspark_kwargs) else: as_df.write.csv(**pyspark_kwargs) csv_file.seek(0) data_kwargs['csv'] = csv_file.read() data_kwargs['table'] = None return cls(**data_kwargs)